
AD-A122 283 EFFECT OF ELECTROLYTE WATER CONTENT ON THE ANOIC
PASSIVATION OF LITHIUM I..U) NAVAL SURFACE WEAPONS
C ENTER SILVER SPRING RO 5 D JAMES ET AL JUN 82

UNCLASSIFIED NSWC/TR-82-318 SRI AD-F500 101 F/ 0/3

Ehmmohhh .NONI



111111115

MICROCOP RE'I. LUTIN ITVI CThAP

-- --- - --



pl&tlb I

NSWC TR 82-318

f

EFFECT OF ELECTROLYTE WATER CONTENT ON
THE ANODIC PASSIVATION OF LITHIUM IN
IM LUC10 4-PROPYLENE CARBONATE

BY S. D. JAMES,
A. R. NAGAO

RESEARCH AND TECHNOLOGY DEPARTMENT

JUNE 1982

Approved f or public release, distribution unlimited.

DEC 10 1982)

E1K NAVAL SURFACE WEAPONS CENTER
Dahigren, Virginia 22448 0 Silver Spring, Maryland 20910

A-

el- 82 12 07 002



READ ANSTRUICM!NS
REPORT DOCUMENTATiON PAGE BEFCR CCMPLET%'NG FORM~

I AZPZA N.JMNER 2.GIT ACCESSiC% NO.3 R9::PfENTS CATAL.C2 NJ~aER

NSWC TR 82-318 Ik9j 111)~
4. TITLE 'and S.ItigI) S. TYPE OF REPO RT & PERIOD COVERED

EFFECT OF ELECTROLYTE WATER CONTENT ON THE ANODIT
PASSIVATION OF LITHIUM IN IM LiC1O4 -ROPYLENE _______________

CARBONATE 6. PERFORMING ORO. REPORtT NuM'OER

7 A.jTtOR(as & CONTRACT OR GRANT NuMdER(mi

S. D. James and A. R. Nagao

3 zEPV:IVI'q 0ROaNIZA'1ZN NAME AND ACORE3S .5.E~. PAO..S:=7 5

Naval Surface Weapons Center AE C %~~3~

White Oak Laboratory 6-5NS55169
Silver Spring. MW 20910 r5;F-3-9

11. CONTROL.NG OFFICE NAME AN40 ADDRESS12REOTDE

June 1982
4 13. NUMBER OF PAGES

23
4.MONITORING AGENCY NAME I ACOORSS(it different trom Con.trolling Ollie*) 15. SECURITY CLASS. (o1 this report)

UNCLASSIFIED
15.. DECLASSIFICATION, OONGRADING

SCHEDUJLE

16. DaSTRIOUTICH STATEMENT (ot this Report)

Approved for public release; distribution unlimited.

1?. DIS7RIOUTION STATEMENT (of -he *&sureet entered in Block 20. it diflot- from Report)

IS. SU.PP.EIENTARY NOTEZS

IS. KEY WORDS fCawtijnuo an reverse@ side It necesary end Idontiy by block numbe3r)

Lithium batteries
Anodes
Passivation

20. ABSTRACT (Contrinue on rovfes side It necessary and Identify by block rnumber)

This wcrk deals with the effect of aqueous contartination on the anode
passivation of Li in 114 LIClO4-propylene carbonate. P'assivation occurs more
readily with increasing electrolyte water content. Preliminary evidence
suggests that anodic passivation may be due to anlodic enrichment and even:ualj
precipitation of LiClO4 in the superficial anolyte layer.

DD i JA:" 7 1473 EDIT-ON OF i 140 Oi I OBSOLETt U:;CLAS q'-F '. D

N 0102. LF.GI 4. ,O I SECURIY LASSIFICATION OF TN:S daZE 1kNO a S 1te@.@a



UNCLASSIFIED
SECUnI CL.ASSIFICATION OF THIS PRAOE r^~.n 0..EtE

SN 0102. LF. 014. 6601

StCURIT'r C.ASSIPICATICN or TNIS PAGE('~a Date Lljpoj



NSWC TR 82-318

FOREWORD

This report describes the effect of aqueous contamination on the anodic
passivation of lithium electrodes in iM LiClO 4 - propylene carbonate. This
work relates to safety problems that have been experienced with anode-limited
lithium batteries. We acknowledge the financial support of the Independent
Research Program of the Naval Surface Weapons Center in conjunction with the

Electrochemistry Technology Block Program.

Approved by:

RCKR. DIXON, Head
Materials Division
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CHAPTER I

INTRODUCTION

Safety problems in both the Li-SO2 and the Li-SOCI2 batteries have
delayed their introduction into advanced weapons systems. The present work seeks
to elucidate hazards originating at the anode (Li) side of the battery. It has
been reported that anode-limited Li-SO2 1 and Li-SOCd2 2 cells can vent
or explode when driven into voltage reversal, especially if metallic Li remains
at the failed anode. We have recently shown 3 that above a certain controlled
current density a Li anode suffers eventual anodic passivation. This terminates
the anode's useful life and forces its voltage to high positive values where
anode substrate or anolyte species are oxidized. Since unconsumed metallic Li
remains at the anode after anodic passivation, this event brings about the
hazardous conditions mentioned above and thus merits detailed examination. The
present report recounts the role of water contamination on the anodic
passivation of Li in 1M LIC1O4 propylene carbonate (PC).

1Dey, A. N., "Safety Studies in Li/SO 2 Cells," J. Electrochem. Soc., 127,
1980, p. 1886.

2Abraham, K. M., Holleck, G. L., and Brummer, S. B., "Studies of Explosion
Hazards of Li/SOCI2 Cells on Forced Overdischarge," Battery Design and
Optimization, S. Gross, ed. (Princeton, New Jersey: The Electrochemical
Society Softbouno Proceeding Series, 1979), p. 356.

3 James, S. D., "The Anodic Passivation of Lithium," submitted to J.
Electrochem. Soc.
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CHAPTER 2

EXPERIMENTAL

1. Test Cell And Discharge Procedure

The electrochemical test cell is made of Pyrex glass and contains about
100 ml of electrolyte under a cover gas of dried argon. Two sizes of test
electrode were used: an 8 cm2 film of Li smeared over a Stainless Steel (SS)
304 disc and a 0.08 cm2 surface Li electrode formed by tamping Li into a 1/8"
hole in a SS block. The higher area test electrode is illustrated in Figure I.
Both electrodes faced upwards toward a SS or Al disc counter electrode about
15 mm above. Lithium, plastered over the threaded tip of a 3 mm SS rod, served
as reference electrode. Discharge curves were recorded at constant current,
anodic to the test electrode at 23 + IC.

2. Desiccant Activation And Electrolyte Desiccation

Two types of solid desiccant were employed to dehydrate solutions. Linde
Type X Molecular Sieve was obtained in the lithium form (LiX). It was activated
by a series of progressive temperature elevations of roughly 100*C (from room
temperature to 500°C) with continuous pumping over a period of five days. Alcoa
F-1 alumina was activated by continuous pumping and heating at 270*C for a period
of seven days. Electrolytes were desiccated by percolation through an 8" x 18 mm
column of desiccant containing Molecular Sieve, alumina or a combination of
both. Percolation rates depended on the level of desiccation desired (usually
5-10 seconds/drop corresponding to 20-40 ml/hour). Both column and receiver were
of Pyrex glass and their atmospheres were closed and looped together via Viton
tubing to exclude the lab atmosphere during these protracted percolations.
Percolation was done in the Dry Room or in the Helium glovebox.

3. Determination Of Electrolyte Water Content

This was done using Metrohm's Karl Fischer automatic titrator obtained from
Brinkmann Instruments, Cantiague, MY. We used the model E547 Titrator with the
EA 875-5 Titration Vessel and the E535 or E415 losimats. Working under a
positive pressure of slowly flowing dried Ar in the Titration Vessel we were able
to reproduce water standards in PC to + 20 and + 7% at the one and five ppm water
levels respectively. However, we found that in- this low water content region the
apparent water equivalence of the Karl Fischer Reagent was smaller at the lower
ppm due to water ingress from the "dry" Ar cover gas. Thus in view of our
particular interest in this low ppm region we transferred all our operations
(electrolyte desiccation, water titration and passivation studies) to a Vacuum
Atmospheres Co, Helium atmosphere glovebox, model # HE-553-2 (water below
0.5ppm). Under these conditio sthe reproducibility of water titers of our
electrolytes was + 20% at the 10 ppm level. This was much inferior to that of
the water standards for reasons presently obscure to us.

7
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4. Attemnts To Lower Electrolyte Water Content Below lpnm

(a) By percolation through desiccant columns

It was earlier believed that properly activated desiccants (Molecular Sieve
or alumina) would be able to dry electrolytes to below one ppm. However, in
LIClO4 -PC, it was found that a water level of only around five ppm could be
reached by this method. In spite of cutting the percolation rate to one drop in
twenty-five seconds (about four ml per hour) and multiple passes through the
column, water content never fell below about five ppm.

(b) By using a drier salt at lower concentration (0.1M LiAsF6 )

We obtained a very dry grade of LiAsF 6 (Electrochemical Grade from US Steel
Corporation). It was nominally 50-100 ppm in water but our analysis showed it to
be actually only eight ppm. Thus, 0.IM and l.OM solutions of this salt in a dry
solvent should have only 0.14 and 1.4 ppm water respectively. However, we found
that our usual O.16A (about 2 min passivation time) passivation runs were not
feasible in the O.IM electrolyte. The higher resistance of this less conductive
electrolyte generated IR drops causing the steel substrate of the Li anode to
anodically dissolve, contaminating the solution with Fe, Cr or Ni ions. So we
abandoned this approach. In the future it might be useful to use the more
conductive 1.0M solution in runs at 1.4 ppm.

(c) By pree]ectrolysis

We tried to dry electrolytes by preelectrolysis in the same electrochemical

cell used for passivation studies. Current was passed to anodically dissolve the
8 cm2 lithium test electrode and plate dendritic lithium on the steel counter
electrode. We hoped that the active lithium dendrites (high area, free lithium
formed by the reduction of lithium ions at the steel cathode surface) would be
able to desiccate the electrolyte:

2 Li + H20-ULi20 + H2  (1)
Preelectrolysis was found to be effective in reducing the water ppm of 1.OM
LiCIO4-PC from 105 to 11 after 45 hours of electrolysis at I mA/cm

2 (8mA).
Electrolysis was done in the helium glovebox with continuous stirring of the
electrolyt4 to maximize contact between dendrites and solution. So we next
predried another batch of this electrolyte by percolation through LiX and then
subjected it to exhaustive electrolysis to hopefully finish the job. However, in
spite of varying conditions of current density and electrolysis time, we were
unable to reduce the water content below five ppm. It is possible that this
apparent residual water might be due to the inefficient exclusion of lithium
dendrites from the electrolyte aliquot pipetted into KF Titration vessel. Some
tiny dendrites may have passed the two layers of predried paper tissue wrapped
around the plastic tip of the Oxford automatic macropipet.

Due to the frustration of our efforts to dry electrolytes below I ppm, we
were forced to alter our plan so that, fcr the time being at least, we would
study lithium passivation in the region upwards of 5 ppm water content.

9
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5. Dendrite Control

During passivation runs (as during preelectrolysis) Li dendrites form at the
SS counter electrode (cathode) and become suspended in the electrolyte. This
became a major problem because firstl the electrolyte's water content will change
with time if these active dendrites are continuously being formed and reacting as
in equation (1); some method must be devised to contain them. Secondly, the
dendrites consume Karl Fischer reagent so that titration gives an exaggerated
value for the electrolyte's water content. This problem was solved by using a
modified Oxford pipet tip fitted with a porous filter to withdraw the sample from
the electrochemical cell. Samples of electrolyte were then presumably filtered
dendrite-free.

To circumvent the first problem, enclosure of the counter electrode by a
porous separator was necessary. We first tried enclosing the counter electrode
in a Pyrex tube terminating in a 20 mm coarse Pyrex frit but unfortunately, its
resistance to current flow was too high for our 40 volt power source to
compensate for. We then enclosed the counter electrode in a similar Pyrex tube
where the frit was replaced by wrapping the end of the tube in 2 layers of
predried paper tissue. This worked at first but soon the dendrites started to
clog the tissue and the resistance increased to an unacceptable level. The
situation is aggravated by lithium's proclivity for growing towards the anode
under the influence of the IR drop in the electrolyte (see below). The problem
of Li dendrites originating at the counter electrode was eventually solved by:

(a) Using an aluminum instead of a steel disc as counter electrode. At low
cathodic current densities, aluminum absorbs deposited litLium as a solid,
non-dendritic LI/Al alloy. (b) Drastically reducing (by x 100) the area of the
lithium test electrode. This proportionately cuts the current needed to
characterize lithium passivation and lowers cathodic current density to values
where only solid Li/Al forms at the counter electrode. A new design of test

electrode was built to accomplish this. Raising the aluminum counter electrode
out of the electrolyte between passivation runs minimizes Li/Al's reaction with
-qter and change of its ppm.

A second source of dendrites took us by surprise. After carefully
eliminating the counter-electrode's dendrites we still saw dendrites swirling
round the stirred electrolyte after a period of electrolysis. We traced these to
a "beard" of dendritic lithium growing on the tip of the lithium reference
electrode. Even though this lithium is electrically isolated from the
current-carrying circuit it can apparently undergo local cell action whereby its
top anodically dissolves and an equal mass of lithium plates dendritically onto
its tip. This is powered by the electric field of the IR drop in the adjacent
electrolyte. We solved this one by wrapping the lithium reference in four layers
of predried paper tissue and raising it to the top of the electrolyte out of most
of the IR drop between test and counter electrodes.

10
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CHAPTER 3

RESULTS AND DISCUSSION

(a) Anodic Passivation Curve

Figure 2 shows a typical example of the anodic passivation of Li at constant

comment. The first curve in a series of runs sometimes contains tle peak labeled
"anodic activation" where anodic current is disrupting a passivating film of Li
salt responsible for the well known "voltage-delay" effect. Then after a plateau
at the Li voltage, anodic passivation occurs and anode voltage rises to a second
plateau where the steel substrate and/or anolyte species are oxidized. This
voltage transition is not due to the complete consumption of Li because a few

minutes wait at open-circuit suffices to depassivate the surface and the process

can then be repeated as in Figure I to give a fairly reproducible T.

The product of the current density (A.cm- 2) and the transition time T
(see) gives the passivation charge Q (C.cm- 2 ) necessary to passivate the Li
anode. In unstirred IM LiCIO 4-PC at room temperature, Li does not passivate
below about lm A.cm - 2 , i.e., Q is infinite. Q falls with rising current
density leveling off at about 2 C.cm- 2 at 100 mA.cm -2 . Thus in this region,
T varies inversely with current as though a discrete film were forming on the
Li surface.

(b) Effect Of Electrolyte Water Content On Anodic Passivation

Other known examples of anodic passivation are thought to involve the
presence of water which allows films of metal oyide or hydroxide to cover the

surface of the anodizing metal. In fact iron does not passivate in non-aqueous
solution unlestraces of water are added (4). The passivating effect of these
films may be exerted in two ways: (a) directly by impeding the flow of electrons
and ions across the metal-solution interface and (b) by providing a porous,
superficial film of oxide/hydroxide in the pores of which the anodically

generated, electrolyte-salt (in our case LiCIO4) can accumulate until it
precipitates out as an impervious layer. The first question is: does water
content play a role in Li's anodic passivation in our system?

4Sato, N. and Okamoto, G., "Electrochemical Passivation of Metals,"

Comprehensive Treatise of Electrochemistrv, B. E. Conway, ed., Vol. 4
(New York: Plenum, 1931), p. 193.

= 11
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FIGURE 2. ANODIC PASSIVATION OF LITHIUM AT CONSTANT CURRENT
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Figure 3 answers a guarded yes to that question. It shows transition tlme
T for Li passivation versus electrolyte water content. Each T is the average
of three to five determinations. Curve B was actually obtained first. It resulted
from a series of experiments over a period of about two months wIth a number of
different 8 cm2 Li electrodes and different electrolyte samples under flowing
predried argon gas. Despite the large scatter in this data it Is reasonable to
draw curve B showing a general downward trend, i.e., Li is more easily
passivated in the moister solutions. The two crosses in curve B refer to
solutions that had been subjected to protracted preelectrolysis. While the
intent of this treatment was dehydration, another effect would be to remove heavy
metal ions from solution. Since these points lie on the same curve as the
others, we can exclude heavy metal ion contamination az, being an important factor
in the anodic passivation. Curve A, on the other hand, was obtained in the same cell
over a period of two hours using a small (0.08 cm2 ) Li electrode and working in
the He glovebox. The electrolyte was first desiccated to 15 ppm by percolation
through LiX and the average T was measured. The successive water additions
were made via a microsyringe, water content checked by Karl Fischer titration and
average T redetermined. Again, there is a clear fall in T with increasing
water content though small relative to that in curve B. The reason for this
smaller effect is not clear to us. It remains possible that a very much larger
T/ppm effect occurs below 5 ppm, a region inaccessible to our limited
desiccating ability.

An apparent anomaly in Figure 3 is the fact that the T's of curve A, at 35
mA.cm- 2 substantially exceed those of curve B at 2OmA.cm- 2 whereas the
reverse would be expected. This is because both the 8 cm2 and the 0.08 cm2

electrodes were unshielded, i.e., the Li was not recessed to enforce
perpendicular diffusion to the Li surface. Thus edge diffusion occurred at both
electrodes and was much more significant at the smaller electrode due to its ten
times higher edge/surface ratio. This is an indication of the importance of mass
transport in the anodic passivation process.

(c) Effect of Chloride Ion on Lithium Passivation

Both chemical and anodic passivation are well-known with metals like Fe, Cr
and Ni and various steels. Chloride ion is very effective in breaking down
passivity and promoting the corrosion of such metals due probably to its strong
specific adsorption on their surfaces. We wished to compare its behavior in the
case of lithium. So we first measured Q (anodic charge needed to passivate
lithium) in l.0M LiC1O4-PC at 20 mA/cm

2 as 3.92 + 0.12 coul/cm 2 . Then we
saturated this solution with LiCl by stirring about 0.2g of LiCl into the 80 ml
of cell solution. Redetermination of Q gave a value of 3.86 + 0.30, i.e.,
passivation was unaffected by the presence of chloride ion. The striking
difference between the two systems may be linked with lithium's much more
negative electrode potential (by perhaps 2 volts). This would electrically repel
the negative chloride ion, preventing its absorption and disabling it for any
depassivation effect.

13
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d) Conclusions and Future Work

Despite Figure 3's conflicting evidence as to the size of the effect, the data
does clearly indicate that water has a role in the anodic passivation of Li in
LiClO4-propylene carbonate. The fairly rapid (several minutes) depassivation
of the anode at open-circuit shows that the passivatirgfilm, whatever its nature,
must leave the Li surface rather quickly by mechanical breakdown or by
physical/chemical dissolution. The pronounced edge-effect, indicating the role
of mass-transport in the passivation process suggests that the precipitation of
anodically generated LIC1O4 may cause passivation. Water may cooperate by
filming the Li with a porous layer of lithium oxide/hydroxide which retains
LIC1O 4 close to the Li surface.

Future work should employ improved drying techniques to explore the region
below 5 ppm water content. Also we should evaluate the effect of different
anions and solvents in the electrolyte under controlled conditions of water
content. Review of this data should then allow more definitive conclusions as to
the nature of the passivation process and recommendations for avoiding this event
in lithium battery use.

15/16
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